Inequality

https://www.linkedin.com/groups/8313943/8313943-6382494954312265730
Let a, b, c be real numbers such that $a^{2}+b^{2}+c^{2}=1$. Prove that
$1 /(5-6 b c)+1 /(5-6 c a)+1 /(5-6 a b) \leq 1$.

Solution by Arkady Alt, San Jose, California, USA.

Since $\sum \frac{1}{5-6 b c} \leq \sum \frac{1}{5-6|b| c \mid}$ then we can assume for further that $a, b, c \geq 0$.
Let $s:=a+b+c, p:=a b+b c+c a, q:=a b c$. Then
$2 p=s^{2}-1, q \leq \frac{s^{3}}{27}, \quad\left(3 s q \leq p^{2} \leq 1\right)$
$9 q \geq 4 s p-s^{3}=2\left(s^{2}-1\right) s-s^{3}=s\left(s^{2}-2\right), s^{2}=(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)=3$
and $\sum(5-6 c a)(5-6 a b)=75-30\left(s^{2}-1\right)+36 s q=105-30 s^{2}+36 q s$,
$(5-6 b c)(5-6 c a)(5-6 a b)=125+180 s q-75\left(s^{2}-1\right)-216 q^{2}=$
$200-75 s^{2}+180 q s-216 q^{2}$ and inequality of the problem becomes
$105-30 s^{2}+36 q s \leq 200-75 s^{2}+180 q s-216 q^{2} \Leftrightarrow$
(1) $0 \leq h(s, q)$, where $h(s, q):=95-45 s^{2}+144 q s-216 q^{2}$.

We already have upper bound $\frac{s^{3}}{27}$ for q and lower bound for q which we need for further we will obtain using Schure Inequality $\sum a^{2}(a-b)(a-c) \geq 0$ which in s, q-notation and normalization $a^{2}+b^{2}+c^{2}=1$ becomes $q \geq \frac{\left(s^{2}+1\right)\left(s^{2}-2\right)}{12 s}$.
Thus, $q \in\left[q_{*}, q^{*}\right]$ where $q^{*}=\frac{s^{3}}{27}$ and $q_{*}:=\min \left\{0, \frac{\left(s^{2}+1\right)\left(s^{2}-2\right)}{12 s}\right\}$ and $\min _{q \in\left[q_{*}, q^{*}\right]} h(s, q)=\min \left\{h\left(s, q_{*}\right), h\left(s, q^{*}\right)\right\}$ (because $h(s, q)$ as function of q is concave up)
and since our aim to prove inequality (1) for any s, q such that $0<s \leq \sqrt{3}$ and $q_{*} \leq q \leq q^{*}$ suffices to prove $h\left(s, q^{*}\right) \geq 0$ and $h\left(s, q_{*}\right) \geq 0$ for $0<s \leq \sqrt{3}$.
We have $h\left(s, q^{*}\right)=95$
$-45 s^{2}+144 s \cdot \frac{s^{3}}{27}-216 \cdot\left(\frac{s^{3}}{27}\right)^{2}=\frac{1}{27}\left(3-s^{2}\right)\left(855+8 s^{4}-120 s^{2}\right) \geq 0$
because $s^{2} \leq 3$ and $855+8 s^{4}-120 s^{2}>0$ for $0<s \leq \sqrt{3}$.
For calculation $h\left(s, q_{*}\right)$ we will consider two cases:

1. If $s \in[\sqrt{2}, \sqrt{3}]$ then $q_{*}=\frac{\left(s^{2}+1\right)\left(s^{2}-2\right)}{12 s}$ and denoting for convenience $t:=s^{2}$ we obtain $h\left(s, q_{*}\right)=95-45 s^{2}+144 s \cdot \frac{\left(s^{2}+1\right)\left(s^{2}-2\right)}{12 s}-216\left(\frac{\left(s^{2}+1\right)\left(s^{2}-2\right)}{12 s}\right)^{2}=$ $95-45 t+12(t+1)(t-2)-\frac{3(t+1)^{2}(t-2)^{2}}{2 t}=\frac{(3-t)\left(3 t^{3}-21 t^{2}+42 t-4\right)}{2 t} \geq 0$ (because for $t \in[2,3]$ we have $3 t^{3}-21 t^{2}+42 t-4=3 t\left(-7 t+t^{2}+14\right)-4=$ $3 t\left((t-7 / 2)^{2}+\frac{7}{4}\right)-4>3 \cdot 2 \cdot \frac{7}{4}-4=\frac{13}{2}>0$.
2. If $0<s<\sqrt{2}$ then $h\left(s, q_{*}\right)=h(s, 0)=95-42 s^{2}>0$.
