Inequality

https://www.linkedin.com/groups/8313943/8313943-6382494954312265730 Let a, b, c be real numbers such that $a^2 + b^2 + c^2 = 1$. Prove that $1/(5-6bc) + 1/(5-6ca) + 1/(5-6ab) \le 1.$ Solution by Arkady Alt , San Jose, California, USA. Since $\sum \frac{1}{5-6bc} \leq \sum \frac{1}{5-6|b||c|}$ then we can assume for further that $a, b, c \geq 0$. Let s := a + b + c, p := ab + bc + ca, q := abc. Then $2p = s^2 - 1, \ q \le \frac{s^3}{27},$ $(3sq \le p^2 \le 1)$ $9a > 4sp - s^3 = 2(s^2 - 1)s - s^3 = s(s^2 - 2), s^2 = (a + b + c)^2 < 3(a^2 + b^2 + c^2) = 3$ and $\sum (5-6ca)(5-6ab) = 75-30(s^2-1)+36sq = 105-30s^2+36qs$, $(5-6bc)(5-6ca)(5-6ab) = 125+180sq-75(s^2-1)-216q^2 =$ $200 - 75s^2 + 180qs - 216q^2$ and inequality of the problem becomes $105 - 30s^2 + 36qs \le 200 - 75s^2 + 180qs - 216q^2 \iff$ $0 \le h(s,q)$, where $h(s,q) := 95 - 45s^2 + 144qs - 216q^2$. (1) We already have upper bound $\frac{s^3}{27}$ for q and lower bound for q which we need for further we will obtain using Schure Inequality $\sum a^2(a-b)(a-c) \ge 0$ which in *s*, *q*-notation and normalization $a^2 + b^2 + c^2 = 1$ becomes $q \ge \frac{(s^2 + 1)(s^2 - 2)}{12s}$ Thus, $q \in [q_*, q^*]$ where $q^* = \frac{s^3}{27}$ and $q_* := \min\left\{0, \frac{(s^2 + 1)(s^2 - 2)}{12s}\right\}$ and $\min_{q \in [q_*,q^*]} h(s,q) = \min\{h(s,q_*), h(s,q^*)\} \text{ (because } h(s,q) \text{ as function of } q \text{ is concave up)}$ and since our aim to prove inequality (1) for any s, g such that $0 < s \le \sqrt{3}$ and $q_* \leq q \leq q^*$ suffices to prove $h(s, q^*) \geq 0$ and $h(s, q_*) \geq 0$ for $0 < s \leq \sqrt{3}$. We have $h(s, q^*) = 95$ $-45s^{2} + 144s \cdot \frac{s^{3}}{27} - 216 \cdot \left(\frac{s^{3}}{27}\right)^{2} = \frac{1}{27}(3 - s^{2})(855 + 8s^{4} - 120s^{2}) \ge 0$ because $s^2 \le 3$ and $855 + 8s^4 - 120s^2 > 0$ for $0 < s \le \sqrt{3}$. For calculation $h(s, q_*)$ we will consider two cases: **1.** If $s \in \left[\sqrt{2}, \sqrt{3}\right]$ then $q_* = \frac{(s^2 + 1)(s^2 - 2)}{12s}$ and denoting for convenience $t := s^2$ we obtain $h(s,q_*) = 95 - 45s^2 + 144s \cdot \frac{(s^2 + 1)(s^2 - 2)}{12s} - 216\left(\frac{(s^2 + 1)(s^2 - 2)}{12s}\right)^2 =$ $95 - 45t + 12(t+1)(t-2) - \frac{3(t+1)^2(t-2)^2}{2t} = \frac{(3-t)(3t^3 - 21t^2 + 42t - 4)}{2t} \ge 0$ (because for $t \in [2,3]$ we have $3t^3 - 21t^2 + 42t - 4 = 3t(-7t + t^2 + 14) - 3t(-7t + 14) - 3t(-7t + t^2 + 14) - 3t(-7t + 14) - 3t(-7t + 14) - 3t(-7t + 14$ $3t\left((t-7/2)^2+\frac{7}{4}\right)-4>3\cdot 2\cdot \frac{7}{4}-4=\frac{13}{2}>0.$ **2.** If $0 < s < \sqrt{2}$ then $h(s, q_*) = h(s, 0) = 95 - 42s^2 > 0$.